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ABSTRACT
This work considers an application executing for a fixed duration,

namely the length of the reservation that it has been granted. The

checkpoint duration is a stochastic random variable that obeys some

well-known probability distribution law. The question is when to

take a checkpoint towards the end of the execution, so that the

expectation of the work done is maximized. We address two sce-

narios. In the first scenario, a checkpoint can be taken at any time;

despite its simplicity, this natural problem has not been considered

yet (to the best of our knowledge). We provide the optimal solution

for a variety of probability distribution laws modeling checkpoint

duration. The second scenario is more involved: the application is

a linear workflow consisting of a chain of tasks with IID stochastic

execution times, and a checkpoint can be taken only at the end of

a task. First, we introduce a static strategy where we compute the

optimal number of tasks before the application checkpoints at the

beginning of the execution. Then, we design a dynamic strategy

that decides whether to checkpoint or to continue executing at the

end of each task. We instantiate this second scenario with several

examples of probability distribution laws for task durations.
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1 INTRODUCTION
Scheduling a job onto a computing platform typically involves mak-

ing a series of reservations of the required resources. Long running

applications, or applications whose total run-time are hard to predit,

usually split their reservation in multiple smaller reservations and

use checkpoint-restart [12, 23] to save intermediate steps of com-

putation. There are multiple advantages to this approach, but the

main one is that it lowers the wait-time of the application, as the job

scheduler can easily place a smaller reservation. On some platforms,

a maximum reservation time is imposed on applications, forcing

∗
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applications that run longer than this maximum time to split their

reservation and rely on a form of checkpoint-restart. These sce-

narios occur in large scale High Performance Computing (HPC)

platforms as well as on the Cloud.

For each actual reservation, the job needs to be checkpointed

before the reservation time has elapsed, otherwise the progress of

the execution during the reservation will be lost.

This work focuses on an application executing for a fixed dura-

tion. The size of the application (sequential or parallel) is irrelevant;

what matters is the volume of the data that needs to be saved before

the end of the execution, or equivalently, the time needed to check-

point that data. The (very natural) objective is to squeeze the most

out of the reservation by executing as much work as possible before

checkpointing. Obviously, in a perfect world, with a reservation of

duration 𝑅 and a checkpoint of duration 𝐶 , one should checkpoint

exactly 𝐶 seconds before the end of the reservation, i.e., at time

𝑅 −𝐶 if the execution started at time 0.

While assuming a perfect knowledge of the value of 𝑅 is quite

reasonable (you knowwhat you paid for), assuming a perfect knowl-

edge of the value of 𝐶 is more questionable. If the actual value of

𝐶 exceeds the one planned by, say, a few seconds, all the work

executed during the reservation will be lost. In fact, it is very likely

that the value of 𝐶 would vary from one execution to another; the

range of variation of the possible values of 𝐶 would typically de-

pend upon the application. What is the best strategy then? If we

know a worst-case value 𝐶max for 𝐶 , should we always use it and

checkpoint at time 𝑅 −𝐶max? Using 𝐶max means taking no risk at

all, but this pessimistic approach leads to wasting execution time

whenever the actual value of 𝐶 is significantly smaller than 𝐶max.

A natural approach is to assume that a probability distribution

lawD𝐶 for the values of𝐶 is known (instead of just an upper bound).

The question becomes to determine the instant to checkpoint that

maximizes the expected amount of work that will be saved before

the end of the reservation. The probability distribution can be

learned from traces of previous checkpoints. A main contribution

of this work is to give the solution to this problem for an arbitrary

distribution D𝐶 , and to determine the solution for a variety of

widely-used distributions whose support lies in an interval [𝑎, 𝑏],
where 𝑎 = 𝐶min and 𝑏 = 𝐶max represent the extreme values that 𝐶

can take. Such distributions include Uniform([𝑎, 𝑏]), the uniform
law in the interval [𝑎, 𝑏], and Exponential or Normal laws truncated

to [𝑎, 𝑏].
So far, we have considered that the execution of the application

can be interrupted at any instant to take a checkpoint. This is a

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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very strong hypothesis too. For instance, numerical iterative appli-

cations are composed of a set of iterations that are repeated until

convergence is reached: checkpoints should be taken only at the

end of an iteration, because the data footprint to be saved has a

much smaller volume than when the checkpoint is taken in the

middle of an iteration. Another example is that of linear workflows,

which are composed of a linear chain of tasks. These tasks are black

boxes that operate on inputs and deliver outputs; checkpoints can

only be taken at the end of a task. A main contribution of this

work is to deal with such applications. To complicate matters, the

duration of the tasks themselves is likely to vary from one execu-

tion to the next, just as the duration of the checkpoint. Assuming

that all task durations are Independent and Identically Distributed

(IID) and obey the same probability distribution law D𝑋 , and still

using another probability distribution law D𝐶 for the duration of

the checkpoint, we provide the optimal strategy to maximize the

expectation of the amount of work executed during the reservation.

This optimal strategy comes in two flavors: either we compute the

best time to checkpoint statically, at the beginning of the execution,

or we dynamically decide either to checkpoint or to continue at the

end of each task, accounting for the actual duration of all previously

executed tasks.

We point out that this work deals with checkpointing on failure-

free platforms! On HPC platforms, checkpoint/restart is the de facto

standard to mitigate the impact of fail-stop errors [12]. By nature,

fail-stop errors strike at random instants. Here we take checkpoints

to save the work at the end of the reservation, which we can in-

terpret as a fail-stop error that will strike at a well-known and

fully deterministic instant. Another difference is that reservations

are used for all kind of jobs, sequential or parallel, while check-

point/restart is used only for very large jobs executing on very

large platforms. Hence this work has a wider potential impact than

large-scale HPC platforms

Altogether, the major contributions of this work are the follow-

ing:

• When the (preemptible) application allows for checkpointing

at any time-step: assuming that checkpoint times obey a

probability distribution law D𝐶 , we compute the optimal

time to checkpoint, in order to maximize the expected work

done during the reservation.

• When the application consists of a linear chain of tasks and a

checkpoint can be taken only at the end of a task: assuming

IID stochastic task execution times that obey a probabil-

ity distribution law D𝑋 , and still assuming that checkpoint

times obey a probability distribution law D𝐶 , we compute

the optimal number of tasks after which to checkpoint, in

order to maximize the expected work done during the reser-

vation. This optimal number of tasks is computed either

statically at the beginning of the execution, or dynamically

at the end of each task.

• For both scenarios, we provide several examples with a vari-

ety of probability distribution laws for checkpoint and task

durations.

The rest of the paper is organized as follows. Section 2 reviews

related work. We discuss applications that can checkpoint at any

instant in Section 3 and stochastic linear workflows where check-

points can only be taken at the end of a task in Section 4. Finally,

Section 5 provides concluding remarks and directions for future

work.

2 RELATEDWORK
We survey related work in this section. First, we point out that most

of the literature uses checkpoints to mitigate the impact of fail-stop

errors that can strike during the execution of a large-scale parallel

application. In such a context, the natural strategy is to checkpoint

periodically, and the optimal checkpointing period is given by the

Young/Daly formula [4, 26]. In our framework, checkpointing is

used only to save the application data at the end of the reserva-

tion. The application may well be sequential or moderately parallel.

The execution is assumed to be safe while progressing during the

reservation. In other words, the only catastrophic event is the end
of the reservation, but this one is fully known in advance. What is

not known is the duration of the final checkpoint at the end of the

reservation.

The first part of this work deals with a fully preemptible applica-

tion executing for 𝑅 seconds and where checkpoints can be taken

at any instant. We assume that checkpoint time obeys a probability

distribution law D𝐶 and investigate what is the optimal instant to

checkpoint in order to maximize the expectation of the amount of

work executed during the reservation. This is a very natural and

important problem because checkpointing at the end of a reser-

vation is routinely used in many scientific fields as a way to save
state [22, 23]. However, to the best of our knowledge, this work is

the first to investigate this problem.

The second part of this work deals with linear workflows made

of identical tasks that are repeated until some criterion is met. This

framework corresponds to iterative methods that are popular for

solving large sparse linear systems, which have a wide range of

applications in several scientific and industrial problems. There

are many classic iterative methods including stationary iterative

methods like the Jacobi method [19], the Gauss-Seidel method [19]

and the Successive Overrelaxation method (SOR) [7, 25], and non-

stationary iterative methods like Krylov subspace methods, in-

cluding Generalized Minimal Residual method (GMRES) [20], Bi-

conjugate Gradient Stabilized method (BiCGSTAB) [10], Gener-

alized Conjugate Residual method (GCR) [6], together with their

ABFT (algorithm-based fault-tolerance) variants [1, 15].

The class of iterative applications goes well beyond sparse lin-

ear solvers. Uncertainty Quantification (UQ) workflows explore

a parameter space in an iterative fashion [16, 18]. This class also

encompasses many image and video processing software which

operate a chain of computations kernels (each being a task) on

a sequence of data sets (each corresponding to an iteration). Ex-

amples include image analysis [21], video processing [9], motion

detection [14], signal processing [3, 11], databases [2], molecular

biology [17], medical imaging [8], and various scientific data anal-

yses, including particle physics [5], earthquake [13], weather and

environmental data analyses [17].

Iterative applications are the primary motivation for the second

scenario of this work: we have an unknown number of tasks, whose

number depends on the convergence rate. The total execution time

is unknown, which calls for a series of fixed-length reservations

of duration 𝑅, where 𝑅 depends upon many parameters provided
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both by the user (estimating the order of magnitude of the total

execution time) and the resource provider (availability and cost

of each reservation). Within each reservation, the execution pro-

gresses from one iteration to the next until a checkpoint is taken

in the end. if the execution starts with a recovery of length 𝑟 , this

amounts to working with a reservation of length 𝑅 − 𝑟 instead of 𝑅.

Each iteration is a task whose length obeys the same probability

distribution law. Another probability distribution law is used for

the duration of the final checkpoint. To the best of our knowledge,

this work is the first to investigate this important but challenging

problem.

3 CHECKPOINTING AT ANY INSTANT
In this section, we assume that a checkpoint can be taken at any

instant during the reservation. Section 3.1 details the framework

and provides a general formulation for the expectation E(𝑊 (𝑋 ))
of the work done when checkpointing 𝑋 seconds before the end

of the reservation, when assuming that checkpoint times obey a

probability distribution lawD𝐶 . Section 3.2 shows how to optimize

this expectation for several widely used probability laws D𝐶 .

3.1 Framework
Starting the execution at time 0, we take a checkpoint at time 𝑅−𝑋 ,
where 0 ≤ 𝑋 ≤ 𝑅. The time to checkpoint 𝐶 is a random variable

that obeys a probability distribution law D𝐶 with support [𝑎, 𝑏],
where 0 < 𝑎 < 𝑏 ≤ 𝑅. In particular, we always have 𝑎 ≤ 𝐶 ≤ 𝑏.

In fact, the lower bound 𝑎 of 𝐶 leads to refine the range of 𝑋 as

𝑎 ≤ 𝑋 ≤ 𝑅: if 𝑋 < 𝑎, there is simply not enough time left to

checkpoint! We use this range 𝑎 ≤ 𝑋 ≤ 𝑅 throughout the paper.

How to choose 𝑋 to maximize the expectation E(𝑊 (𝑋 )) of the
amount of work𝑊 (𝑋 ) that is saved when checkpointing at time

𝑅 − 𝑋? The work saved by a checkpoint at time 𝑅 − 𝑋 is

𝑊 (𝑋 ) =
{
(𝑅 − 𝑋 )1[𝑎,𝑋 ] (𝐶) if 𝑋 ≤ 𝑏
𝑅 − 𝑋 if 𝑋 > 𝑏

Here 1[𝑎,𝑋 ] (𝐶) is the indicator function whose value is 1 is 𝐶 ∈
[𝑎,𝑋 ] and 0 otherwise. Indeed, we save 𝑅 −𝑋 if𝐶 ≤ 𝑋 and nothing

otherwise. This confirms that choosing𝑋 > 𝑏 will never be optimal,

but it may well be the case that the optimal is reached for 𝑋 < 𝑏.

Let𝑍 be a random variable with cumulative distribution function

(CDF) 𝐹 and probability density function (PDF) 𝑓 with possibly

an infinite support. The law D𝐶 of 𝐶 is defined as the law of 𝑍

truncated within [𝑎, 𝑏]. Then we have:

P(𝐶 ≤ 𝑥) = P(𝑍 ≤ 𝑥 |𝑎 ≤ 𝑍 ≤ 𝑏)

=
P(𝑍 ≤ 𝑥 ∩ 𝑎 ≤ 𝑍 ≤ 𝑏)
P(𝑎 ≤ 𝑍 ≤ 𝑏)

=


0 if 𝑥 ∉ [𝑎, 𝑏]∫ 𝑥

𝑎
𝑓 (𝑡 )𝑑𝑡∫ 𝑏

𝑎
𝑓 (𝑡 )𝑑𝑡

=
𝐹 (𝑥 )−𝐹 (𝑎)
𝐹 (𝑏 )−𝐹 (𝑎) otherwise

This gives the CDF 𝐹𝐶 of 𝐶 . Rewriting it as

𝐹𝐶 (𝑋 ) = P(𝐶 ≤ 𝑥) =
∫ 𝑥

𝑎
𝑓 (𝑡)𝑑𝑡∫ 𝑏

𝑎
𝑓 (𝑡)𝑑𝑡

=

∫ 𝑥

𝑎

𝑓 (𝑡)∫ 𝑏

𝑎
𝑓 (𝑢)𝑑𝑢

𝑑𝑡

we obtain that the PDF 𝑓𝐶 of 𝐶 is 𝑡 ↦−→ 𝑓 (𝑡 )
𝐹 (𝑏 )−𝐹 (𝑎) .

We can now derive the expectation of the work saved when

checkpointing at time 𝑋 :

E(𝑊 (𝑋 )) =
∫ 𝑏

𝑎
𝑊 (𝑋 ) 𝑓 (𝑐 )

𝐹 (𝑏 )−𝐹 (𝑎) 𝑑𝑐

=


∫ 𝑏

𝑎
(𝑅 − 𝑋 )1[0,𝑋 ] (𝑐)

𝑓 (𝑐 )
𝐹 (𝑏 )−𝐹 (𝑎) 𝑑𝑐

=
𝐹 (𝑋 )−𝐹 (𝑎)
𝐹 (𝑏 )−𝐹 (𝑎) (𝑅 − 𝑋 )

if 𝑋 ≤ 𝑏

𝑅 − 𝑋 otherwise

(1)

In Section 3.2, we use Equation (1) to find the optimal value of 𝑋

for various probability distribution laws.

3.2 Solution for several probability distribution
laws

3.2.1 Uniform law. For a uniform law in [𝑎, 𝑏], there is no need

for truncating, and we directly have the PDF and CDF as

𝑓𝐶 (𝑡) =
1

𝑏 − 𝑎

𝐹𝐶 (𝑋 ) =
∫ 𝑋

𝑎

𝑓 (𝑡)𝑑𝑡 = 𝑋 − 𝑎
𝑏 − 𝑎

The expectation of the work saved when checkpointing at time 𝑋

is:

E(𝑊 (𝑋 )) =
{
𝑋−𝑎
𝑏−𝑎 (𝑅 − 𝑋 ) if 𝑋 ≤ 𝑏
𝑅 − 𝑋 otherwise

(2)

The trinomial 𝑥 ↦−→ (𝑥 − 𝑎) (𝑅 − 𝑥) is maximum for 𝑥 = 𝑅+𝑎
2

. This

is the optimal value 𝑋opt of 𝑋 if
𝑅+𝑎
2

< 𝑏, otherwise the maximum

is obtained for some 𝑥 larger than 𝑏, and then 𝑏 is optimal in the

interval [𝑎, 𝑏]. Altogether

𝑋opt =

{
𝑅+𝑎
2

if 𝑅 ≤ 2𝑏 − 𝑎
𝑏 otherwise

=𝑚𝑖𝑛

(
𝑅 + 𝑎
2

, 𝑏

)
Figure 1 provides an example of each case (optimal reached be-

fore 𝑏 or at 𝑏). Recall that the range of 𝑋 is [𝑎, 𝑅]. When there

remains 𝑋 = 𝑎 seconds before the end of the reservation, the

checkpoint will fail almost surely, and the expectation of the work

saved is E(𝑊 (𝑎)) = 0. Similarly, if we checkpoint at the very be-

ginning of the reservation, i.e., 𝑋 = 𝑅, no work is executed and

E(𝑊 (𝑅)) = 0. In between, the expectation E(𝑊 (𝑋 )) of the work
done obeys Equation (2). In particular, it decreases linearly from

𝑋 = 𝑏 to𝑋 = 𝑅. In Figure 1(a), the maximum of E(𝑊 (𝑋 )) is reached
for 𝑋opt =

𝑅+𝑎
2

= 5.5, with E(𝑊 (𝑋opt)) ≈ 3.1; the pessimistic ap-

proach would use 𝑋 = 𝐶max = 𝑏 and get E(𝑊 (𝑏)) = 2.5, reaching

only 80% of the optimal work amount in average. On the contrary,

in Figure 1(b), the pessimistic approach is optimal since 𝑋opt = 𝑏.

The main take-away is that deciding to checkpoint with 𝑋 = 𝑏,

hence preparing for the worst-case of checkpoint duration, is not

always a good strategy.

3.2.2 Exponential law. Let 𝐹 and 𝑓 be the CDF and PDF of an

Exponential distribution law of parameter 𝜆 = 1

𝜇 with 𝜇 ∈ [𝑎, 𝑏].
We have 𝑓 (𝑡) = 𝜆𝑒−𝜆𝑡 and 𝐹 (𝑥) = 1 − 𝑒−𝜆𝑥 . The distribution law

of 𝐶 is this Exponential law truncated to [𝑎, 𝑏]. From Section 3.1,

we have

E(𝑊 (𝑋 )) =
{
𝐹 (𝑋 )−𝐹 (𝑎)
𝐹 (𝑏 )−𝐹 (𝑎) (𝑅 − 𝑋 ) = 𝑒−𝜆𝑎−𝑒−𝜆𝑋

𝑒−𝜆𝑎−𝑒−𝜆𝑏 (𝑅 − 𝑋 ) if 𝑋 ≤ 𝑏
𝑅 − 𝑋 otherwise
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(a) Graph of E(𝑊 (𝑋 ) ) . The maximum is
𝑋opt = 5.5 with 𝑎 = 1, 𝑏 = 7.5, 𝑅 = 10.

(b) Graph of E(𝑊 (𝑋 ) ) . The maximum is 𝑋opt = 𝑏

with 𝑎 = 1, 𝑏 = 5, 𝑅 = 10.

Figure 1: Both cases for 𝑋opt with a Uniform law.

Differentiating for 𝑋 ≤ 𝑏, we obtain

𝑑E(𝑊 (𝑋 ))
𝑑𝑋

=
−𝑒−𝜆𝑎 + (𝜆𝑅 + 1)𝑒−𝜆𝑋 − 𝜆𝑋𝑒−𝜆𝑋

𝑒−𝜆𝑎 − 𝑒−𝜆𝑏

Using Wolfram Alpha [24], this derivative has a unique zero for

𝑋 =
−W(𝑒−𝜆𝑎+𝜆𝑅+1) + 𝜆𝑅 + 1

𝜆

where W is the main branch of Lambert’s W function (defined as

W(𝑧) = 𝑥 ⇔ 𝑥𝑒𝑥 = 𝑧). Differentiating again, we get

𝑑2E(𝑊 (𝑋 ))
𝑑𝑋 2

=
−𝜆(2 + 𝜆𝑅 − 𝜆𝑋 )𝑒−𝜆𝑋

𝑒−𝜆𝑎 − 𝑒−𝜆𝑏

Since𝑋 < 𝑅+ 2

𝜆
, we have 2+𝜆𝑅−𝜆𝑋 > 0. Moreover, 𝑒−𝜆𝑎−𝑒−𝜆𝑏 > 0

(since 𝑡 ↦−→ 𝑒−𝜆𝑡 is decreasing) and −𝜆𝑒−𝜆𝑋 < 0. Therefore the

second derivative is strictly negative on [𝑎, 𝑏]. The expectation

E(𝑊 (𝑋 )) of the work saved when checkpointing at time 𝑋 is a

concave function on [𝑎, 𝑏]. The zero of the first derivative is thus a

maximum. Altogether, the optimal value 𝑋opt is given by

𝑋opt = min

(
−W(𝑒−𝜆𝑎+𝜆𝑅+1) + 𝜆𝑅 + 1

𝜆
,𝑏

)
Figure 2 provides an example of each case (optimal reached before 𝑏

or at 𝑏). Again, the main take-away is that preparing for the worst-

case of checkpoint duration and choosing 𝑋 = 𝑏 is not always a

good strategy. Contrarily to the Uniform law, the Exponential law

requires to compute a complicated value for 𝑋opt, but this can be

done easily with available tools like [24].

(a) Graph of E(𝑊 (𝑋 ) ) . The maximum is𝑋opt ≈ 3.9

with 𝑎 = 1, 𝑏 = 5, 𝑅 = 10, 𝜆 = 1

2
.

(b) Graph of E(𝑊 (𝑋 ) ) . The maximum is 𝑋opt = 𝑏

with 𝑎 = 1, 𝑏 = 3, 𝑅 = 10, 𝜆 = 1

2
.

Figure 2: Both cases for 𝑋opt with an Exponential law.

3.2.3 Normal law. Let Φ and 𝜑 the CDF and PDF of the standard

Normal law: 𝜑 (𝑡) = 𝑒
− 𝑡2

2√
2𝜋

and Φ(𝑥) =
∫ 𝑥

−∞ 𝜑 (𝑡)𝑑𝑡 . The Normal law

with mean 𝜇 and standard deviation 𝜎 has CDF Φ( 𝑥−𝜇𝜎 ). We assume

that 𝐶 obeys the Normal law with mean 𝜇 ∈ [𝑎, 𝑏] and standard
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deviation 𝜎 > 0 truncated to [𝑎, 𝑏]. From Section 3.1, we have

E(𝑊 (𝑋 )) =

Φ( 𝑋−𝜇

𝜎
)−Φ( 𝑎−𝜇

𝜎
)

Φ( 𝑏−𝜇
𝜎

)−Φ( 𝑎−𝜇
𝜎

)
(𝑅 − 𝑋 ) if 𝑋 ≤ 𝑏

𝑅 − 𝑋 otherwise

We get rid of the positive constant𝐾 = 1

Φ( 𝑏−𝜇
𝜎

)−Φ( 𝑎−𝜇
𝜎

)
by letting

𝑔(𝑋 ) = 𝐾E(𝑊 (𝑋 )). Differentiating for 𝑋 < 𝑏, we get

𝑔′ (𝑋 ) = 𝑑E(𝑊 (𝑋 ))
𝑑𝑋

=
1

𝜎
𝜑

(
𝑋 − 𝜇
𝜎

)
(𝑅−𝑋 )−

[
Φ

(
𝑋 − 𝜇
𝜎

)
− Φ

(𝑎 − 𝜇
𝜎

)]
We have 𝑔′ (𝑎) = 1

𝜎 𝜑 (
𝑎−𝜇
𝜎 ) (𝑅 − 𝑎) > 0 since 𝑎 < 𝑅. We also have

𝑔′ (𝑅) = −[Φ( 𝑅−𝜇𝜎 ) − Φ( 𝑎−𝜇𝜎 )]. We see that 𝑔′ (𝑅) < 0 since Φ
is an increasing function and 𝑎 < 𝑅. Since 𝑔′ is continuous, the
intermediate value theorem shows that there exists 𝑐 ∈ [𝑎, 𝑅] such
that 𝑔′ (𝑐) = 0. Differentiating again:

𝑔′′ (𝑋 ) = 𝑑2E(𝑊 (𝑋 ))
𝑑𝑋 2

= −
𝜑 (𝑋−𝜇

𝜎 )
𝜎

[
2 +

(
𝑋 − 𝜇
𝜎

)
(𝑅 − 𝑋 )

]
𝑔′′ has two zeros:

𝑋1 =
𝑅+𝜇−

√
(𝑅+𝜇 )2+8𝜎2−4𝜇𝑅𝜎

2

𝑋2 =
𝑅+𝜇+

√
(𝑅+𝜇 )2+8𝜎2−4𝜇𝑅𝜎

2

We see that 𝑋1 < 𝜇 < 𝑅 < 𝑋2. Furthermore, we have{
𝑔′′ (𝑋 ) > 0 si 𝑋 < 𝑋1 ou 𝑋 > 𝑋2

𝑔′′ (𝑋 ) < 0 si 𝑋1 < 𝑋 < 𝑋2

𝑔 is thus a concave function on [𝑋1, 𝑋2] and a convex function

elsewhere. There are two possible cases:

(1) either 𝑎 ≥ 𝑋1, and then 𝑔 is concave on [𝑎, 𝑅]; hence the
zero 𝑐 of 𝑔′ is a maximum of 𝑔.

(2) or 𝑋1 > 𝑎, and then 𝑔′ is increasing [𝑎,𝑋1]; since 𝑔′ (𝑎) > 0,

𝑔′ is positive on [𝑎,𝑋1]. Hence 𝑐 ∈]𝑋1, 𝑅 [ and 𝑔 is concave
in a neighborhood of 𝑐 , and 𝑐 is again a maximum of 𝑔.

Altogether, we have shown the existence of a maximum 𝑐 ∈]𝑎, 𝑅]
for the expectation E(𝑊 (𝑋 )) , namely

𝑋opt = min(𝑐, 𝑏)

We do not have an explicit formula for 𝑋𝑜𝑝𝑡 but we can evaluate

it numerically. Figure 3 provides an example of each case (optimal

reached before 𝑏 or at 𝑏). The main take-away for the Normal law

is the same as for the Exponential law.

3.2.4 LogNormal law. Let 𝐹 and 𝑓 be the CDF and PDF of a Log-

Normal law of parameters 𝜇 and 𝜎 : we have

𝑓 (𝑡) = 1

𝑡𝜎
√
2𝜋
𝑒𝑥𝑝

(
− (𝑙𝑛(𝑡) − 𝜇)2

2𝜎2

)
=

1

𝑡𝜎
𝜑

(
𝑙𝑛(𝑡) − 𝜇

𝜎

)
and 𝐹 (𝑥) =

∫ 𝑥

0
𝑓 (𝑡)𝑑𝑡 = Φ

(
𝑙𝑛 (𝑥 )−𝜇

𝜎

)
. Recall that the mean 𝜇∗ and

standard deviation 𝜎∗ of this law are such that

𝜇∗ = exp(𝜇 + 𝜎
2

2

) and 𝜎∗ =
√︃(

exp(𝜎2) − 1

)
exp(2𝜇 + 𝜎2)

We assume that 𝐶 obeys the LogNormal law with parameters 𝜇

and 𝜎 truncated to [𝑎, 𝑏], and we choose these parameters 𝜇 and 𝜎

(a) Graph of E(𝑊 (𝑋 ) ) . The maximum is
𝑋opt ≈ 4.2 with 𝑎 = 1, 𝑏 = 5.5, 𝑅 = 10, 𝜇 = 2.3, 𝜎 = 1.

(b) Graph of E(𝑊 (𝑋 ) ) . The maximum is 𝑋opt = 𝑏

with 𝑎 = 1, 𝑏 = 4.7, 𝑅 = 10, 𝜇 = 3.5, 𝜎 = 1.

Figure 3: Both cases for 𝑋opt with a Normal law.

so that 𝜇∗ ∈ [𝑎, 𝑏]. From Section 3.1, we have

E(𝑊 (𝑋 )) =

Φ( 𝑙𝑛 (𝑋 )−𝜇

𝜎
)−Φ( 𝑙𝑛 (𝑎)−𝜇

𝜎
)

Φ( 𝑙𝑛 (𝑏)−𝜇
𝜎

)−Φ( 𝑙𝑛 (𝑎)−𝜇
𝜎

)
(𝑅 − 𝑋 ) if 𝑋 ≤ 𝑏

𝑅 − 𝑋 otherwise

The determination of the maximum of the expectation of the work

done is similar to what we have done for a truncated Normal law,

therefore we do not detail the derivations. Just as for the truncated

Normal law, the maximum can be obtained either for 𝑋opt < 𝑏 or

for 𝑋opt = 𝑏. Figure 4 provides an example of each case (optimal

reached before 𝑏 or at 𝑏). The main take-away for the Log Normal

law is the same as for the Exponential and Normal laws.

4 STOCHASTIC LINEARWORKFLOWS
4.1 Framework
This section addresses a much more challenging problem than the

one of Section 3. Now the application consists of a linear chain

of tasks. Checkpoints cannot be taken at any instant during the
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(a) Graph of E(𝑊 (𝑋 ) ) . The maximum is𝑋opt ≈ 4.6

with 𝑎 = 1, 𝑏 = 6.2, 𝑅 = 10, 𝜇 = 1.25, 𝜎 = 0.5.

(b) Graph of E(𝑊 (𝑋 ) ) . The maximum is 𝑋opt = 𝑏

with 𝑎 = 1, 𝑏 = 6, 𝑅 = 10, 𝜇 = 1.75, 𝜎 = 0.5.

Figure 4: Both cases for 𝑋opt with a LogNormal law.

execution but instead must be taken at the end of a task. The ob-

jective is to execute as many tasks as possible and to checkpoint

successfully before the end of the reservation. We further assume

that task execution times are not fully deterministic and can vary

from one execution to the next. In the most general setting, we

would have a chain

𝑇1 → 𝑇2 → · · · → 𝑇𝑛 → 𝑇𝑛+1 → . . .

where each task𝑇𝑖 is characterized by two probability distributions:

• a first probability distribution D (𝑖 )
𝑋

to model the execution

time of the task

• a second independent probability distributionD (𝑖 )
𝐶

to model

the time to checkpoint at the end of the task

All theD (𝑖 )
𝑋

andD (𝑖 )
𝐶

distributions are supposed to be independent.

We note that if task execution times are deterministic instead of

stochastic (in other words, if D (𝑖 )
𝑋

is constant for all 𝑖), the problem

can be solved using the same approach as in Section 3. Obviously,

it is much more realistic to assume that task execution times can

change, even moderately, from one execution to another; but this

assumption dramatically complicates the problem.

In this work, we restrict to a simpler yet challenging instance

of the problem: we assume that the probability distributions are

the same for all tasks. More precisely, we assume that the D (𝑖 )
𝑋

are

independent and identically distributed (IID) and obey the same dis-

tribution D𝑋 ; similarly, the D (𝑖 )
𝐶

are independent and identically

distributed (IID) and obey the same distribution D𝐶 . As mentioned

in Section 2, this problem instance with IID stochastic tasks per-

fectly models the behavior of large-scale numerical iterative solvers

for sparse linear systems of equations.

Because of the difficulty of the problem, we make further tech-

nical assumptions. The key argument in the solution of the static

strategy described in Section 4.1 is to restrict to distributions D𝑋

such that the sum of 𝑛 IID random variables 𝑋𝑖 obeying D𝑋 will

obey a well-known probability distribution, typically the same type

as D𝑋 but with scaled parameters. Recall that each 𝑋𝑖 represents

the execution time of task 𝑇𝑖 , so that 𝑆𝑛 =
∑𝑛
𝑖=1 𝑋𝑖 represents the

execution time of the first 𝑛 tasks: this is why we need 𝑋 (𝑛)
to

obey some well-known probability distribution. We investigate

three cases below that match this restriction: when D𝑋 is a Nor-

mal law, a Gamma law, or a Poisson law (this last one requires

discretization of time). Finally, for simplicity of the derivations, we

assume that each distribution D (𝑖 )
𝐶

obeys the same Normal law

D𝐶 ∼ N(𝜇𝐶 , 𝜎2𝐶 ) truncated to positive values (support [0,∞)). It
is easy to extend the approach to different distributions D (𝑖 )

𝐶
of

arbitrary types: simply compute the expectation of the work done

after 𝑛 iterations for each value of 𝑛, using the approach below, and

select the best value.

To summarize, task execution times are IID distributions D𝑋

with positive support [0, +∞[, checkpoint times are IID truncated

Normal distributionsD𝐶 ∼ N[0,+∞[ (𝜇𝐶 , 𝜎2𝐶 ), and all these distribu-
tions are independent. We investigate two strategies. First we use

a static approach: at the beginning of the execution, we compute

the value 𝑛opt of the number of iterations that should be executed

before taking a checkpoint in order to maximize the expectation of

the work done. Then, we provide a dynamic strategy that accounts

for the work actually done so far and decides at the end of each

iteration whether it is better (in expectation) to checkpoint now or

to perform another iteration and checkpoint only then.

4.2 Static strategy
The static strategy is applied before the beginning of the execution,

and takes a checkpoint at the end of the same iteration number

𝑛opt. The goal is to determine the value of 𝑛opt which maximizes

the expectation E(𝑛) of the work done when checkpointing after

𝑛 iterations. Assuming that D𝑋 has positive support [0,∞), E(𝑛)
can be expressed as follows:

E(𝑛) =
𝑅∫

0

𝑥
©­«
𝑅−𝑥∫
0

𝑓𝐶 (𝑐)𝑑𝑐
ª®¬ 𝑓𝑆𝑛 (𝑥)𝑑𝑥 (3)

In Equation (3), 𝑓𝐶 is the PDF of D𝐶 and 𝑓𝑆𝑛 is the PDF of 𝑆𝑛 =∑𝑛
𝑖=1 𝑋𝑖 . As stated before, this expression is useful only when each

random variable 𝑆𝑛 obeys some well-known distribution.
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4.2.1 Normal law. In this section, we assume that task execution

times obey a Normal law: 𝑋𝑖 ∼ N(𝜇, 𝜎2). Then 𝑆𝑛 is a Normal law

too: 𝑆𝑛 ∼ N(𝑛𝜇, 𝑛𝜎2). A non-truncated Normal law to model task

execution times is meaningful only if its mean is a large positive

number and its standard deviation relatively small, so that the

probability for𝑋𝑖 to be negative remains very low, thereby ensuring

the coherence of the model. But for correctness, we need to update

Equation (3) to account for possible negative values. We derive:

E(𝑛) =
𝑅∫

−∞
𝑥

(
𝑅−𝑥∫
0

𝑓𝐶 (𝑐)𝑑𝑐
)
𝑓𝑆𝑛 (𝑥)𝑑𝑥

=

𝑅∫
−∞

𝑥

[
Φ
(
𝑅−𝑥−𝜇𝐶

𝜎𝐶

)
−Φ

(
− 𝜇𝐶

𝜎𝐶

)
1−Φ

(
− 𝜇𝐶

𝜎𝐶

) ]
𝜑

(
𝑥−𝑛𝜇√
𝑛𝜎

)
1√
𝑛𝜎
𝑑𝑥

We replace 𝑛 by a real variable 𝑦 ∈]0, +∞[ to get the continuous

function

𝑓 (𝑦) =
𝑅∫

−∞

𝑥


Φ

(
𝑅−𝑥−𝜇𝐶

𝜎𝐶

)
− Φ

(
− 𝜇𝐶
𝜎𝐶

)
1 − Φ

(
− 𝜇𝐶
𝜎𝐶

)  𝜑
(
𝑥 − 𝑦𝜇
√
𝑦𝜎

)
1

√
𝑦𝜎
𝑑𝑥

If 𝑓 has a maximum 𝑦opt, then the optimal value 𝑛opt will be either

𝑛opt = ⌊𝑦opt⌋ or 𝑛opt = ⌈𝑦opt⌉, whichever gives the larger value for
𝑓 .

We provide a numerical example in Figure 5. In this example, 𝑓

has a maximum 𝑦opt ≈ 7.4. We have 𝑓 (7) ≈ 20.9 and 𝑓 (8) ≈ 17.6,

hence 𝑛opt = 7.

Figure 5: Graph of function 𝑓 (continuous function for E(𝑛))
with 𝜇 = 3, 𝜎 = 0.5, 𝜇𝐶 = 5, 𝜎𝐶 = 0.4 and 𝑅=30.

4.2.2 Gamma law. In this section, we assume that task execution

times obey a Gamma law:𝑋𝑖 ∼ Gamma(𝑘, 𝜃 ). Recall that its support
is [0,∞( and its PDF is 𝑓 (𝑥, 𝑘, 𝜃 ) = 𝑥𝑘−1𝑒

𝑥
𝜃

Γ (𝑘 )𝜃𝑘 where Γ denotes the

Euler function 𝑧 ↦−→
+∞∫
0

𝑡𝑧−1𝑒−𝑡𝑑𝑡 . Because the support of this

distribution only has positive values, we can use Equation (3) as

such. Indeed, the sum 𝑆𝑛 of 𝑛 independent 𝑋𝑖 ∼ Gamma(𝑘, 𝜃 ) is
§𝑛 ∼ Gamma(𝑛𝑘, 𝜃 ). We derive:

E(𝑛) =
𝑅∫
0

𝑥

(
𝑅−𝑥∫
0

𝑓𝐶 (𝑐)𝑑𝑐
)
𝑓𝑆𝑛 (𝑥)𝑑𝑥

=

𝑅∫
0

𝑥

[
Φ
(
𝑅−𝑥−𝜇𝐶

𝜎𝐶

)
−Φ

(
− 𝜇𝐶

𝜎𝐶

)
1−Φ

(
− 𝜇𝐶

𝜎𝐶

) ]
𝑥𝑛𝑘−1𝑒−

𝑥
𝜃

Γ (𝑛𝑘 )𝜃𝑛𝑘 𝑑𝑥

We replace 𝑛 by a real variable 𝑦 ∈]0, +∞[ to get the continuous

function

𝑔(𝑦) =
𝑅∫

0

𝑥


Φ

(
𝑅−𝑥−𝜇𝐶

𝜎𝐶

)
− Φ

(
− 𝜇𝐶
𝜎𝐶

)
1 − Φ

(
− 𝜇𝐶
𝜎𝐶

) 
𝑥𝑦𝑘−1𝑒−

𝑥
𝜃

Γ(𝑦𝑘)𝜃𝑦𝑘
𝑑𝑥

If 𝑔 has a maximum 𝑦opt, then the optimal value 𝑛opt will be either

𝑛opt = ⌊𝑦opt⌋ or 𝑛opt = ⌈𝑦opt⌉, whichever gives the larger value for
𝑔.

We provide a numerical example in Figure 6. In this example, 𝑔

has a maximum𝑦opt ≈ 11.8. We have 𝑔(11) ≈ 4.77 and 𝑔(12) ≈ 4.82,

hence 𝑛opt = 12.

Figure 6: Graph of function 𝑔 (continuous function for E(𝑛))
with 𝑘=1, 𝜃 = 0.5, 𝜇𝐶 = 2, 𝜎𝐶 = 0.4, 𝑅=10

4.2.3 Poisson law. In this section, we consider a Poisson law. As

Poisson(𝜆) has for support the set N of nonnegative integers, we

assume that task execution times are expressed in some discrete unit

(e.g., seconds) and take only integer values. We assume that 𝑅 and

the mean of the 𝑋𝑖 random variables are large in front of the time

unit. We also assume w.l.o.g. that 𝑅 is an integer. Task execution

times obey a Poisson law: 𝑋𝑖 ∼ Poisson(𝜆). Recall that Poisson(𝜆)
has for PDF 𝑓 (𝑘) = 𝑒−𝜆 𝜆𝑘

𝑘!
. The sum 𝑆𝑛 of 𝑛 independent 𝑋𝑖 ∼

Poisson(𝜆) is §𝑛 ∼ Poisson(𝑛𝜆). We derive:

E(𝑛) =
𝑅∑
𝑗=0

𝑗

[
Φ
(
𝑅− 𝑗−𝜇𝐶

𝜎𝐶

)
−Φ

(
− 𝜇𝐶

𝜎𝐶

)
1−Φ

(
− 𝜇𝐶

𝜎𝐶

) ]
𝑒−𝑛𝜆 (𝑛𝜆) 𝑗

𝑗 !

We replace 𝑛 by a real variable 𝑦 ∈]0, +∞[ to get the continuous

function

ℎ(𝑦) =
⌊𝑅⌋∑︁
𝑗=0

𝑗


Φ

(
𝑅− 𝑗−𝜇𝐶

𝜎𝐶

)
− Φ

(
− 𝜇𝐶
𝜎𝐶

)
1 − Φ

(
− 𝜇𝐶
𝜎𝐶

)  𝑒
−𝑦𝜆 (𝑦𝜆) 𝑗

𝑗 !

If ℎ has a maximum 𝑦opt, then the optimal value 𝑛opt will be either

𝑛opt = ⌊𝑦opt⌋ or 𝑛opt = ⌈𝑦opt⌉, whichever gives the larger value for
ℎ.
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We provide a numerical example in Figure 7. In this example, ℎ

has a maximum 𝑦opt ≈ 5.98. We have ℎ(5) ≈ 14.6 and ℎ(6) ≈ 15.8,

hence 𝑛opt = 6.

Figure 7: Graph of function ℎ (continuous function for E(𝑛))
with 𝜆 = 3, 𝜇𝐶 = 5, 𝜎𝐶 = 0.4, 𝑅 = 29

4.3 Dynamic strategy
The static strategy does not account for the actual duration of

the tasks during the beginning of the execution and always takes

a checkpoint after the same (optimal) number of iterations. This

approach is best suited to the scenario where the random variables

𝑋𝑖 follow a distribution D𝑋 with a small standard deviation. On

the contrary, if D𝑋 has a large standard deviation, there is a risk

to checkpoint much too early or much too late, depending upon

what values the 𝑋𝑖 have effectively been taking. In this section, we

introduce a dynamic strategy: given the values of previous 𝑋𝐼 ’s, we

decide at the end of each task whether it is better to checkpoint now

or to continue with (at least) one additional task. To this purpose,

at the end of each task, we compare the expectation E(𝑊𝐶 ) of the
work done if we checkpoint now, and the expectation E(𝑊+1) of
the work done if we execute one more task before checkpointing. If

E(𝑊𝐶 ) ≥ E(𝑊+1) we stop the execution and checkpoint; otherwise,

we execute one more task and re-apply the algorithm at the end of

that new task.

For 𝑛 ∈ N, let𝑊𝑛 be the work done after the first 𝑛 tasks. We

have:

• If we checkpoint:

E(𝑊𝐶 ) =𝑊𝑛P(𝐶 ≤ 𝑅 −𝑊 (𝑛))

• If we continue execution:

E(𝑊+1) =
𝑅−𝑊𝑛∫
0

(𝑥 +𝑊𝑛)
©­­«
𝑅−𝑊𝑛−𝑥∫

0

𝑓𝐶 (𝑐)𝑑𝑐
ª®®¬ 𝑓𝑋𝑛+1 (𝑥)𝑑𝑥

where 𝑓𝑋𝑛+1 is the PDF of the random variable 𝑋𝑛+1. Since 𝐶 ∼
N[0,+∞[ (𝜇𝐶 , 𝜎2𝐶 ), we derive:

E(𝑊𝐶 ) =𝑊𝑛P(𝐶 ≤ 𝑅 −𝑊𝑛) =𝑊𝑛


Φ

(
𝑅−𝑊𝑛−𝜇𝐶

𝜎𝐶

)
− Φ

(
− 𝜇𝐶
𝜎𝐶

)
1 − Φ

(
− 𝜇𝐶
𝜎𝐶

) 
and

E(𝑊+1) =
𝑅−𝑊𝑛∫
0

(𝑥 +𝑊𝑛)
©­­«
𝑅−𝑊𝑛−𝑥∫

0

𝑓𝐶 (𝑐)𝑑𝑐
ª®®¬ 𝑓𝑋𝑛+1 (𝑥)𝑑𝑥

=

𝑅−𝑊𝑛∫
0

(𝑥 +𝑊𝑛)

Φ

(
𝑅−𝑊𝑛−𝑥−𝜇𝐶

𝜎𝐶

)
− Φ

(
− 𝜇𝐶
𝜎𝐶

)
1 − Φ

(
− 𝜇𝐶
𝜎𝐶

)  𝑓𝑋𝑛+1 (𝑥)𝑑𝑥

Technically, the dynamic strategy provides more flexibility than

the static one. because we know the actual value𝑊𝑛 of the work

executed after 𝑛 tasks, we no longer need that 𝑆𝑛 =
∑𝑛
𝑖=1 𝑋𝑖 obeys

some well-known probability distribution. In what follows, we

instantiate the problem with D𝑋 being a truncated Normal law, a

Gamma law or a Poisson law.

4.3.1 Truncated Normal law. Weassume here that𝑋𝑖 ∼ N[0,+∞[ (𝜇, 𝜎2)
for all 𝑖: D𝑋 is a Normal law truncated to 0, +∞. We derive that

E(𝑊+1) =
𝑅−𝑊𝑛∫
0

(𝑥 +𝑊𝑛)
[
Φ
(
𝑅−𝑊𝑛−𝑥−𝜇𝐶

𝜎𝐶

)
−Φ

(
− 𝜇𝐶

𝜎𝐶

)
1−Φ

(
− 𝜇𝐶

𝜎𝐶

) ]
𝜑 ( 𝑥−𝜇

𝜎
)

𝜎 (1−Φ(− 𝜇

𝜎
) ) 𝑑𝑥

We can now directly compare E(𝑊𝐶 ) and E(𝑊+1). We provide

a numerical example in Figure 8. In this example, the two graphs

intersect at𝑊int ≈ 20.3. When𝑊𝑛 >𝑊int, it is better to checkpoint

right now than executing another task, while it is the opposite for

𝑊𝑛 <𝑊int.

Figure 8: Graph of E(𝑊+1) (in green) and of E(𝑊𝐶 ) (in red) as
a function of𝑊𝑛 with 𝜇 = 3, 𝜎 = 0.5, 𝜇𝐶 = 5, 𝜎𝐶 = 0.4, 𝑅 = 29.
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4.3.2 Gamma law. We assume here that 𝑋𝑖 ∼ Gamma(𝑘, 𝜃 ):D𝑋 is

a Gamma law. We derive that

E(𝑊+1) =
𝑅−𝑊𝑛∫
0

(𝑥+𝑊𝑛)

Φ

(
𝑅−𝑊𝑛−𝑥−𝜇𝐶

𝜎𝐶

)
− Φ

(
− 𝜇𝐶
𝜎𝐶

)
1 − Φ

(
− 𝜇𝐶
𝜎𝐶

) 
𝑥𝑘−1𝑒−

𝑥
𝜃

Γ(𝑘)𝜃𝑘
𝑑𝑥

We can now directly compare E(𝑊𝐶 ) and E(𝑊+1). We provide

a numerical example in Figure 9. In this example, the two graphs

intersect at𝑊int ≈ 6.4. When𝑊𝑛 >𝑊int, it is better to checkpoint

right now than executing another task, while it is the opposite for

𝑊𝑛 <𝑊int.

Figure 9: Graph of E(𝑊+1) (in green) and of E(𝑊𝐶 ) (in red) as
a function of𝑊𝑛 with 𝑘 = 1, 𝜎 = 0.5, 𝜃 = 0.5, 𝜇𝐶 = 2, 𝜎𝐶 = 0.4,
𝑅 = 10.

4.3.3 Poisson law. In this section, similarly to Section 4.2.3, we

consider that task execution times are expressed in some discrete

unit (e.g., seconds) and take only integer values. We assume that

𝑅 and the mean of the 𝑋𝑖 random variables are large in front of

the time unit. We also assume w.l.o.g. that 𝑅 is an integer. Task

execution times obey a Poisson law: 𝑋𝑖 ∼ Poisson(𝜆). We derive:

E(𝑊+1) =
𝑅−𝑊𝑛∑︁
𝑗=0

( 𝑗 +𝑊𝑛)

Φ

(
𝑅−𝑊𝑛− 𝑗−𝜇𝐶

𝜎𝐶

)
− Φ

(
− 𝜇𝐶
𝜎𝐶

)
1 − Φ

(
− 𝜇𝐶
𝜎𝐶

)  𝑒
−𝜆 𝜆

𝑗

𝑗 !

We can now directly compare E(𝑊𝐶 ) and E(𝑊+1). We provide a

numerical example in Figure 10. In this example, the two graphs

intersect at𝑊int ≈ 18.9. When𝑊𝑛 >𝑊int, it is better to checkpoint

right now than executing another task, while it is the opposite for

𝑊𝑛 <𝑊int.

4.4 And after the checkpoint?
We conclude this section with a short discussion about using the

time left in the reservation, if any, after a checkpoint has been

successfully taken. Should we attempt to execute one or several

new tasks and take a new checkpoint after these new tasks? or

should we drop the reservation?

Figure 10: Graph of E(𝑊+1) (in green) and of E(𝑊𝐶 ) (in red)
as a function of𝑊𝑛 with 𝜆 = 3, 𝜇𝐶 = 5, 𝜎𝐶 = 0.4, 𝑅 = 29.

This question can be raised when there is enough time left in

the reservation after a successful checkpoint. Of course there must

remain at least 𝑎 = 𝐶min seconds, the minimum time to checkpoint.

Such a scenario is indeed possible; it is more likely with the static

approach which determines when to checkpoint at the beginning of

the execution, hence which can overestimate actual task execution

times; but it can also happen with the dynamic strategy.

If we decide to continue the execution, we can always re-use

both approaches, either static or dynamic, for the time left in the

reservation. However, some HPC or cloud systems charge by time

actually spent rather by time reserved. In that case, it may be worth

to drop the reservation and save money on our account. Obviously,

the decision involves many parameters, including the urgency of

getting application results and the budget of the user!

5 CONCLUSION
This work has dealt with the problem of maximizing the expectation

of the work that can be done during a fixed-length reservation.

The key question is when to take a checkpoint at the end of the

reservation. We have started with applications where a checkpoint

can be taken at any time. For such applications, we have provided

the optimal solution when checkpoint time can be modeled as a

random variable obeying a probability distribution law D𝐶 with

bounded support [𝑎, 𝑏]. An important result was to assess the gain

that can be achieved over the pessimistic (but risk-free) approach,

which assumes the highest value 𝐶max = 𝑏 for the checkpoint

duration 𝐶 , using a variety of well-known probability distribution

laws D𝐶 .

Then, we have focused on the more involved problem where the

application is a linear workflow consisting of a chain of tasks with

IID stochastic execution times, and a checkpoint can be taken only

at the end of a task. We have introduced a static strategy where

we compute the optimal number of tasks before the checkpoint at

the beginning of the execution. We have also designed a dynamic

strategy, which decides whether to checkpoint or to continue ex-

ecution at the end of each task. We have instantiated this second
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scenario with several examples of probability distribution laws for

task durations. Obviously, the dynamic strategy is to be preferred

whenever its use is possible, because it accounts for the actual exe-

cution times of all tasks that have been executed so far. But not all

applications can be modified on the fly to insert a checkpoint, and

the static strategy has a wider potential of applicability.

However, the static strategy requires all task execution times to

be IID, while the dynamic strategy does not have this restriction. In

fact, it would be easy to extend the dynamic strategy to deal with

the general instance of the problem, as described in Section 4.1: in

the general instance, each task𝑇𝑖 is characterized by two probability

distributions, D (𝑖 )
𝑋

to model the execution time of the task, and

D (𝑖 )
𝐶

to model the time to checkpoint at the end of the task. The

only requirement is that all the D (𝑖 )
𝑋

and D (𝑖 )
𝐶

distributions are

independent. However, extending the static strategy to find the

optimal solution for the general case seems out or reach. Future

work will be devoted to the design of efficient heuristics to solve

this challenging problem.

This work has laid the foundations for the design of checkpoint

strategies within a fixed-length reservation. Further work is needed

to experimentally assess the gain provided by such strategies for

real-life scientific applications. We expect this gain to be much

higher for stochastic linear workflows than for fully preemptible

applications: indeed, in the former case (workflows), the pessimistic,

risk free, approach needs to account for (and add-up) two worst-

case durations, namely that of a task and that of a checkpoint; while

in the latter case (preemptible applications), only the maximum

duration of a checkpoint is required. An experimental campaign,

either via simulations using traces or through actual application

runs, is needed to quantify the effective gain for both application

types.

Finally, as mentioned in the introduction, this work is not re-

lated to checkpointing on failure-prone platforms. Dealing with the

occurrence of fail-stop errors within fixed-size reservations would

be an interesting direction for future work.
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